Course Outline Electromagnetic Theory Physics 704/804

Meeting Times: 5:45-7:00, Tuesdays and Thursdays

Meeting Place: OCNPS 303

Text: J. D. Jackson, Classical Electrodynamics, 3rd Edition, John Wiley

Office Hours: 3:00-5:00 Thursdays OCNPS 213

Supplementary Texts: Landau and Lifshitz, Classical Field Theory, Flanders, Differential Forms with

Applications to the Physical Sciences, Weintraub, Differential Forms

Grading: Homework Problems 40%; Mid-term Examination 20%; Final Examination 40%

Course Content

Introduction to Differential Forms

Faraday's Law in Forms

Constitutive Relations

Maxwell Equations (Chapter 6)

Displacement Current

Vector and Scaler Potential

Gauge Transformations

Wave Equation and Retarded Green Function

Energy Conservation and Poynting's Theorem

Transformation Properties of E-M Quantities

• Electromagnetic Waves (Chapter 7)

Plane Wave Solutions

Reflection and Refraction

Polarization

Total Internal Reflection

Wave Guides and Cavities (Chapter 8)

Propagating Modes

Electromagnetic Cavities

Optical Fibers

• Radiating Systems and Multipoles (Chapter 9)

Dipole and Quadrupole Radiation

Spherical Waves

Angular Momentum

• Diffraction (Chapter 10)

Blue Sky

Optical Theorem

• Special Relativity (Chapter 11)

Relativistic Invariance and Lorentz Transformations

Lorentz Group
Thomas Precession; BMT Equation
Covariance of Electromagnetism
Transformation of Electromagnetic Fields

Radiation by Accelerated Charges (chapter 14)
 Lienard-Wiechert Potentials
 Larmor's Formula; Angular Distribution of Radiation
 Synchrotron Radiation
 Undulator Radiation
 Thomson Scattering